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An Improved Computational Technique for

Calculating Electromagne :iz Forces and

Power Absorptions Generated in

Spherical and Deformed Body in

Levitation Melting Devices
Jin-Ho Zong, Julian Szekely, and Elliot Schwartz

Abstract--An improved computational technique for calcu-
lating the electromagnetic force field, the power absorption and
the deformation of an electromagnetically levitated metal sam-
ple is described. The technique is based on the w_lume integral
method, but represents a substantial refinenlent_ the coordi-
nate transformation employed allows the efficient treatment of
a broad class of rotationally symmetrical bodies. Computed re-
sults are presented to represent the behavior of levitation melted
metal samples in a multi-coil, multi-frequency levitation unit to
be used in microgravity experiments. The theoretical predic-
tions are compared with both analytical solutions and with the
results of previous computational efforts for the spherical sam-
ples and the agreement has been very good. The treatment of
problems involving deformed surfaces and actually predicting
the deformed shape of the specimens breaks ne_' ground and
should be the major usefulness of the proposed method°
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Fig. I. Schematic view of EML device using multifrequency system: RF-

Generator for i) positioning, ii) heating, iii) shaping coil systems.

HILE levitation melting has been used quite exten-sively in metallurgical research Ill, 12], [31, it has

recently assumed greatly increased importance as a pos-

sible vehicle for space experimentation [4], [5], [6]. Elec-

tromagnetic levitation (EML) is attractive for the contain-

erless processing of conducting melts in a microgravity
environment because, through the use of a multiple coil

arrangement, it is possible to provide for the independent

control of the positioning forces and the power employed

for heating the sample [7]. A schematic sketch of such an

arrangement is given in Fig. 1, where the upper and lower

coils from generator i) are used for positioning, the inter-

mediate coils of ii) are used for heating and the central

coil iii) maybe used for shaping or "squeezing" the sam-

ple.
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In the rational design of in-flight experiments it is crit-

ical that the lilting (positioning) and shaping forces, as
well as the power absorbed by the sample, be known quite

accurately. The main parameters of the EML device are

geometry of coil and sample, applied current, applied fre-

quency, and conductivity of the sample.

In representing this system we encounter problems at
the following levels: 1) calculation of the lifting force and

the power absorption by a symmetrically placed spherical

sample: 2) calculation of the lifting force and the power

absorption by a deformed sample, the shape of which is

predetermined; 3) calculation of the lifting force and the

power absorption for a sample, the shape of which is de-
fined as a result of the calculations; 4) the repeat of the

previous case. but with an allowance for fluid flow; and

5) repeat of the previous case but with an allowance for
transient behavior. Case I) may be tackled analytically;

indeed the available analytical solutions will serve as an
excellent benchmark against which the computed results

may be tested. The subsequent cases all need a numerical

approach; furthermore, cases 3)-5) will require a highly
efl-icient computational scheme because of the iterative
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procedures that are involved. While the ultimate objective

of the research is to tackle cases 1) through 5), in the

present paper we shall confine our attention to cases
1)-3),

In a recent paper, G. Lohofer [8] presented an analyt-

ical solution for the total power absorption Ps by a spher-

ical sample placed in a field exhibiting rotational sym-

metry.
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However, as noted before, this analytical result has

some limitations as a potential design tool because it is

confined to spherical samples, while in reality the samples

may deform; furthermore, the analytical results do not

provide information on the local values of the induced

force field or heat generation. The local values of the field

would, of course, be needed for calculating or even esti-

mating melt circulation. Therefore, the numerical calcu-

lation of the heating rate and of the induced electromag-

netic forces is highly desirable.

Several standard techniques are available for calculat-

ing the induced current and force field produced in a me-

tallic sample surrounded by induction coils. These in-

clude volume integral method (VIM) [9], [10], finite

element method (FEM) [11], [12], and boundary element

method (BEM) [13], [14]. Each of these techniques has
advantages and drawbacks.

One of the practical difficulties in performing these nu-

merical calculations by FEM or VIM techniques is asso-

ciated with the fact that the very small skin depth resulting

from the high-frequency coil current might cause numer-

ical errors because the induced magnetic field and asso-
ciated parameters decrease exponentially within the skin

depth [131. Thercforc. care has to be taken that a suffi-

ciently large number of grid points are placed within the

skin depth region, which, in turn, requires substantial
computing time. One alternative is the BEM, which could

be especially attractive for very small skin depths.

However, a typical EML tends to utilize a very broad

range of frequencies and currents, in the range of 102 -
103 kHz and 102 - 103 A, in order to obtain sufficient

Joule heating and positioning or deformation. Further-

more, in a typical application, as the sample is being
heated or is allowed to cool, major changes will occur in

temperature, and hence in the electrical conductivity and

the skin depth• Inthe EML experiments currently contem-

plated, the ratio of skin depth/sample radius can range
from about 1/2 to 1/30. It follows that the domain of

interest may not be necessarily confined to the near sur-
face region.

The volume integral (coupled circuit or mutual induc-

tance) method has the advantage that it is computationally

very efficient and simple to use. However. in its original
form, it has the drawback that the elements have a rect-

angular cross-section and curved surfaces are approxi-

mated in a staircase fashion which can introduce signifi-

cant errors and place major demands on the computing
time in tackling free surface problems [15] [16]. Previ-

ously reported studies for levitation melting based on the

mutual inductance method have postulated a very small

skin depth, and hence plane wave approximation• and
used only one grid point on the surface in order to avoid

this difficulty [171 [18]. Since the induced magnetic flux
density and force depend not only on the magnitude but
on the spatial variation of the induced current in the re-

gion near the surface, this approach may not be always

appropriate, especially when high accuracy is needed,

e.g., in microgravity processing. Furthermore. as the

forces induced within the skin depth form the dri_ ing force
for fluid motion within the sample as well a,_ for the ,,hapc

change, they have to be known quite accuratcl}

It follows from the foregoing that while there are many

possible computational schemes available for represent-

ing the interaction of a sample and the surrounding coils,

the existing volume integral methods are not optimally

suited to levitation melting because of the extreme case

of high curvature and broad range of skin depth.,, that have

to be tackled, These problems would be brought into fo-

cus even more sharply when the behavior of deformed
samples is being examined. This has motivated the de-

velopment of the computational technique to be described
in the following,

Subsequently, we shall present a numerical scheme

based on the volume integral method, applicable to axi-

symmetric deformed samples as well as spheres in the lev-

itation melting and positioning device, which could min-

imize the numerical errors that were inherently associated

with the previously used computational schemes. We shall

also show how this technique can be effectively inter-
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linked with the shape determination algorithm for calcu- t_
lating the shape of the electromagnetically deformed

droplets in EML devices.

FORMULATION

A. An Improved Volume Integral Technique for

Electromagnetic Calculation

In the numerical scheme the electromagnetic levitating

forces and Joule heating are obtained in a rotationally

symmetric system of otherwise arbitrary shape by a vol-

ume integral method through manipulating the well-

known concept of mutual inductances. Let us consider an

axisymmetric system which is discretized into N elemen-

tary circuits in the sample and a total of g_= i Mf external

coils of F different frequency systems as shown in Fig. 2.
The vector potential A (defined by B = V x A ) at the

position 7 is readily written by Biot-Savart's law. Inthe
absence of ferromagnetic materials the current flows in
the C-direction alone.

_o .f 7 (-t ')"_(_) = _ -vo, l* - *'1 d.(, 9- (2)

The _b-component of the ith element in the sample is ex-

pressed as following;

:= .oE f..,"" 47r f=l j=l rij

+ Z , (3)
k:=l riky ) d

where the first term on the right-hand side represents the

induced potential by other elementary circuits and itself
while the second term is due to the external source coils,

#0 is the magnetic permeability, and

dS - cross sectional area of the circuit

ru, rat -= distance between coil-i and coil j or k
dl _ line element of circuit in 6-direction

Jr, I:- induced current density in the sample, and
applied current in the coil (a 180" phase dif-

ference in time is expected between them)

which have general complex forms contain,

ing the coil frequency and phase in each of

the systems oaf, W:

On expressing the current density, etc. using phasor no-
tation we have

af = Jo exp j(oaft - eli) = ,17 + jJ}" "" (4)
and

where superscripts R and 1 denote the real and the imag-

inary part, and

dAi
J/= oE = -o--. (5)

dt

Using (4), (5) the following relations are obtained

g= -±J;
_oay

A_ = 1 j:. (6)
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Fig. 2. Discretization into rotational elementary circuits on the physical

domain (PD) in multifrequency system.

Substituting (3) into (6) and multiplying by _ • dTi we
obtain

"kX (Jf/. dL + _ X % Mo(J:"S)jf=l f=1

e Mr

= -o f='_to/k/_==,M ik:(l/)_, i = I,N
(7)

Z (s:),R • dT',- o Y: oa;
f=l f=l "=

F Ms

= +<r ,i_==,oaf£:1___, M,,(I 1-)_,, i = 1, N, (8)

where the mutual inductance between coil i andj or i and

kf can be obtained by the elliptic integral in the 4_-direc-
tion:

a4,,= 7

= #o _ d-[i. (10)

Dividing (7) and (8) by e and recalling

_ dTi

R_ = _, (11)
d&o

I,
J_= d-_i' (12)

we have the following relationships

F F N F

(If);Ri+ f_=,oafT],=,Mij(If):= - _ oaf# (13)f=l = f-i

F F N F

Z (I/)irR,-:_=ioaf,_=,Mo(If)t= + _ oaf*I, (14)f=_ = f=i
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where, qb is the flux in the source terms, which is deter-

mined by applied current and the geometric relationships

MI

kf_l

Mf

¢b} = Z M,J_, (16)
kf= I

By eliminating (lf)J from (13) and (14):

E Ri+w} Mq (Ii)_
f-, j ,.

= s=,g *}- % ,-g, ,f . (17)

which may be expressed as the following system of linear
equations

[R + X]T= C f= l,F (18)

where

R diagonal matrix of resistances of the circuit-ele-
ments

X full matrix containing the self and mutual induc-
tance

I vector of the unknown currents

C vector of applied sources.

For applied currents of a given frequency, the system
of linear equations (18) can be solved simultaneously

using matrix inversion methods. The induced current den-

sity, jR and ji and hence ,4 are obtained by (13), (12),

and (6). With J and A known, the magnetic flux density

(B) can be obtained either by Biot-Savart's law orby the

direct differentiation of the vector potential_V x A ). For
multiple frequencies, the total J. A. and B are summed

from their corresponding components calculated for each

frequency. The magnetic field and induced current field

having been so calculated, the time-averaged levitation
force (Fi) and the power absorption of the sample (P,) and

are given by the following expressions:

F, = _. o ,,,,,2Re {J x B*} dvdt (19)

Ps = _. 0 ,ol2Re dvdt. (20)

To perform the calculations a grid structure has to be
defined. As noted in the introduction we seek to establish

a flexible gridding system appropriate for an axisymmet-

ric body of otherwise arbitrary shape. The grids are gen-
erated in a rectangular uniform calculation domain (CD2)

and can be transformed into the physical domain (PD)
through the intermediate calculation domain (CDI) as

shown in Fig. 3,

r = f(?, h(O)) ? = F(r, h(O)) (21)

0 = g(O) 0 = G(O). (22)

r ?

1

(PD)_

1
(CD1) (CO2)

Fig. 3. S,.'hemalicrcpresentalionof coordinateIransformalion.

Two kinds of control functions were used for grid gen-

eration. The contraction/stretching functions f and g are
used for grid control, F and G are their inverses, and h(O)

is the shape function of the sample. The function f(rl is

used from the general transformation family proposed by

Roberts 1191. The function h(O) can be given analytically
or numerically. The spherical shape is the special case of
h(O) = constant.

The transformation from CD2 to CDI can be done by
writing:

0 O? 0 0-0 0 OF 0
-- .dV --. _ -- (23)

Or Or 07 Or 00 0r 07

0 O?OhO0 0 O0 0 OF OhOG 0 OG 0

O0 - Oh O0 0007 + 0000 - Oh O0 O0 O? + 0---00-0"

(24)

and the transformation from CDI to PD, in c_ther words.

from spherical coordinates (r. 0, 4_) to C:lrtcsian cc_ordi-
nates (x, 3'. =). is given by the general geometric relation-

ship between two coordinate systems [20]. For example,

the area element (dS) and the magnetic field density are

expressed as follows:

dS'*' O_r 07_ I= x 0---0 dr dO

G'(0)
= r -- d_" dO(-i) (25)

F'(r)

_=vx_

I ! [aFahOGO aGO)f(?. h(O))'-sin 0 00 00 07 + 00 ,90 )

(Aof(?, h(O)) sin 0)]

+ f(P, h(O)) OT"{f(P' h(O))A,} O.

(26)

B. Application to Shape Determination o[Levitated

Droplet

The deformed shape of the levitated droplet was cal-

culated using the local force balance at the surface of the

sample in conjunction with an iterative technique [21]
[22]. The instantaneous displacement of a surface element
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was derived from the surface force balance with a con-

stant-volume constraint which gave the new shape until

the normal pressures reached equilibrium. The actual al-

gorithm used was as follows (see flowchart in Appendix).

1) The magnetic field strength is calculated for an ini-

tial shape according to the previously described scheme.

2) By assuming an infinitesimal displacement ,'x_ in the

normal direction of magnitude proportional to the local
residual force, the force balance at the surface is given by

],,=- pgz + _ + 3"(K- Ko) + X a,_ o_ A._.

(27)

where p is density of the sample, g is gravity, z is the
vertical distance from the top, 3' is the surface tension

between the liquid metal and the gas, and X is a Lagrange
multiplier which is determined by

+ 8_
a_ _ + y(K - K.) dS

_, = (28)

on dS

B,. is the tangential magnetic field at the surface and K is

the sum of the local principal surface curvatures, which

can be expressed in spherical coordinates by

r(O)r"(O) - 2r'(0) 2 - r(O)2

K = KL + K_ = [r,(O) 2 + r(0)213/2

r'(O)
1 - -- cot (0)

r(O)
+ [r,(0) 2 + r(O)2ll/e. (29)

If Ko is the curvature of the bottom of the sample where

the magnetic pressure is zero then

A y _ - ogz + _gg + 3"(K - Ko) + X A ti

where k is a constant of proportionality, and Ati and f are

unit vectors in the normal and r directions, respectively.
3) Therefore, the new shape is determined by

r(O) = r°(O) - k ogz + _ + 3'(K- K0) + X (31)

4) The electromagnetic forces h)r the new shape are
calculated.

5) The criterion on residual forces on surface points

].f,,I < _ is checked. If it is not satisfied, return to step

2) and calculate again.

Rzsut.rs AND DISCUSSION

The main features of the improved calculation scheme

are the following: 1) Arbitrary axi-symmetric coil config-

urations may be accommodated. 2) Multifrequency and
multiphase coil currents may be represented. 3) The whole

range of skin depths may be tackled. 4) An arbitrary axi-

symmetric shape of a levitated body can be treated.

5) The computational scheme can be used to predict the

shape of the levitated specimen, even for significant de-
formation.

For the computational methodology of the induced cur-

rent density distribution, the linear system, as stated in

(18), is a symmetric and strictly diagonally dominant ma-
trix because the order of resistances of the circuits is much

higher than that of the inductances. It was, therefore, de-

fined as a positive definite matrix and the computations

were carried out by the Cholesky decomposition method
which could minimize the arithmetic operations. Further-

more, the numerical experience of this study has shown

that relatively coarse grids can be used even for the irreg-
ular shapes as a result of using the coordinate transfor-

mation. Although the drawback of the volume integral

method has been known to be that the computing time
increases very rapidly with the grid size for solving the

linear system (16), the calculation was carried out very

efficiently by the algorithm presented above. For the com-

puted results presented below, a 20 x 20 mesh was the

finest grid used and the cpu time of a set of calculations,

including the calculation of the lifting force, power ab-

sorption rate and the distribution of the time-averaged lo-
cal Lorentz force, was about 8 min on a micro-VAX sta-

tion 3100, while 66 s were required for an 15 x 15 grid

and 26 seconds for an 8 x 15 grid.

Fig. 4 shows the computed heat absorption by a spher-

ical beryllium sample as a function of the applied current
in the external coils. The calculation was carried out with

the same geometry as that described in a previous paper

[41, in which the frequency was 107 kHz and the ratio of

skin depth to the sample radius was 0.337. The agreement

with G. Lohofer's analytical solution as Shown in (1) is

seen to be very good in spite of the fact that coarse grids
were used.

It is seen that the calculation is readily carried out when

the dimension of the skin depth is comparable to the ra-

dius of the sample. This is to be expected. However. one

may anticipate computational difficulties at higher fre-

quencies and for samples having a higher electrical con-
ductivity.

Fig. 5(a) shows a set of computed results depicting the

power absorption as a function of the applied frequency

with the grid size as a parameter for a spherical beryllium

sample with the same coil geometry as that described in

previous paper [4]. The resultsgiven by the analytical so-

lution are also shown for the sake of comparison. The

sensitivity of the computed results to the number of grid

points used is clearly seen; on using a 20 x 20 grid

scheme the accuracy of the numerical predictions is still

quite satisfactory. A 20 x 20 grid for a very slightly de-

formed sample is shown in Fig. 5(b).
The actual error is shown explicitly in Fig. 6(a) as a

function of the number of grid points used within the skin
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• Fig. 6. (a) Variation of relative error with the number of grid points within
one skin depth from the surface. (b) 20 × 20 grid with uniformly distrib-

uted grid points for highly deformed sample. (c) 20 × 20 grid with expo-
nentially distributed grid points for highly deformed sample.

depth. The total number of grid points (8 - 20 in r-di-

rection) and the distribution method (uniform, nonuni-

form or exponential distribution) are tested. It should be

remarked that the error is determined not only by the num-

ber of grid points located within the skin depth, but by
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the actual location of these grid points, which means that

using fewer grid points and a proper distribution is pref-

erable to using a larger number of grid points and a uni-
form distribution. One may state generally, however, that

by placing about 3-4 grid points within the skin depth one
may reduce the error to below 5%. Our experience has

shown that the error may be minimized if the location of

the grid points follows that same exponential function as

does the decay of the induced current and the magnetic

flux density as we proceed from the outer surface toward

the center of the sample. 20 x 20 grids for highly de-

formed samples with uniformly distributed and exponen-

tially distributed grid points are shown in Fig. 6(b) and

(c), respectively.

Fig. 7 illustrates the effect of the sample temperature
on the accuracy of the power absorption calculations for

the TEMPUS heating coil system. (The schematic cut-

through of the TEMPUS coil system used in this study is

shown in Fig. 8 [23]). In the planning of microgravity

experiments it is very important to attain specified sample

heating rates. The prediction and control of these heating

rates is complicated by the strong temperature depen-
dence of the electrical conductivity.

It is seen that the electrical conductivity of the copper

sample decreases very markedly with temperature in the

solid state, while the conductivity decreases slightly with-

temperature in the molten state. The corresponding power

absorption, however, increases with temperature almost
linearly, but shows an abrupt discontinuity near the phase

change, which could cause disturbances during mehing.

The figure shows that by using an exponential grid spac-

ing an excellent agreement may be produced between the
numerical calculations and the analytical results.

In designing the electromagnetic levitation device two
complementary objectives are sought: 1) to actually lift,

i.e., "levitate the sample" in a stable position and 2) to

heat the sample.

In the less critical earthbound applications both these

objectives may be met by a single-frequency operation,

using just oneset of coils. In a microgravity environment,

where overall efficiency is a trl,ajor consideration, it has

been found that a two-coil arrangement, sketched in Fig.

1, could provide an improved overall efficiency. As illus-
trated, in coil i), the rotational direction of the upper coil

is directly opposite that in the lower coil, thus creating
currents with a phase difference of 180 °. Conversely, the

coil system in it) consists of two coils with the same turn-

ing direction. The net result of this arrangement is that

system i) creates a magnetic quadrupole field, whereas

system it) creates a magnetic dipole field.

Fig. 9, representing magnetic field calculations carried

out with the same geometry described in a previous paper

[241 with a current of 300 A and a frequency of 450 kHz,

shows that the magnetic flux density induced by the dipole

field is much larger than that induced by the quadrupole
field because of the absence of a current cancellation ef-

fect. However, this effect causes the quadrupole field to

be stable. This is the reason why a quadrupole arrange-
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Fig. 7. Temperature dependency of sample conductivity and correspond-

ing power absorption (10 mm dia. copper sphere in TEMPUS heating fa-

cility).

£

, ,,

t

Fig. 8. Schematic cut-through of TEMPUS coil geometry 23, unit is mm

(inner four coils: dipole field for heating, outer eight coils: quadrupole field

for positioning).

I xlO-I(Tesla'l

Fig. 9. Typical computed magnetic field density by the quadrupole (left)

and dipole (right) field at same condition (for I g iron drop with 300 A.

450 kHz. by the coils of 1241).

ment is ideal to provide stable lifting, while a dipole ar-

rangement is desirable for heating.

Fig. 10 illustrates the effect of sample position along
the vertical axis on the power absorption for a one gram

iron drop in the positioning coil system used in the pre-
vious paper [241, Inspection of the figure shows quite good



1_40 IEEE TRANSACTIONS ON MAGNETICS. VOL. 28. NO. 3, MAY 1992

.... I .... I .... I .... I .... I ....

,_ _, : PREVIOUS CALULATION(8 X 15) (_l .#

\ o : c_E_r csLcu_rlo_8x ts) /
is0 _"x,_ --: _'Lrr'c c*u:UL*u°N //,_

i 100 .

0 .... I .... I .... I .... I,,,,I ....
-6 -4 -2 0 2 4

POS1110N OF' SAMPLE IN VI_lCI_C_U, AX_(mm)

Fig, I0. Comparison of heat-absorption with previous data according to

the sample positions (|oi" I g iron dn_p with 30(1 A. 450 kHz. by the coils

of 1241).
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agreement between these three sets of data, computations

that were previously performed, analytical predictions,
and the results of the present calculations. The present

results are in better agreement with the analytical predic-

tion. The figure also suggests that the level of power ab-

sorption can be controlled by varying the equilibrium po-
sition under earthbound conditions. The minimum value

of power absorption occurs when the sample is located at

the center of the coil system, but this is not a character-

istic of the magnetic quadrupole field.

Fig. II shows the effect of the distance between the

upper and lower coils (d in Fig. II is half of this distancel

of the heating coil system on the power absorption, ex-

amined with the same coil geometry as in the previous
paper [24] with an in-phase current of 300 A and a fre-

quency of 450 kHz. The closer the two coils, the larger

is the heating effect. However, it is important to obtain a

uniform heating field which is independent of the sample

position in order to have stable experimental conditions.

The gradual change in the convexity of the curves indi-

cates that it would be possible to determine the optimal

coil design that will create a uniform temperature field
regardless of sample position.

The computational scheme allows us to examine the in-

teraction of the "heating" and the "positioning" coils.

Fig. 12 illustrates the superpositioning effect of the dif-

ferent frequencies in the heating and positioning coil sys-

tems. When the levitated sample is located at an equal
distance from the two coils along the rotational axis of

symmetry, the maximum power absorption is produced

by the heating coil system and the minimum power ab-

sorption is produced by the positioning coil system. How-

ever, by the proper combination of the two coil systems.

uniform heating capability can be obtained which is in-

dependent of the sample position along the axis of sym-

metry, As described above, the positioning coil generates

a large stable force field, while the heating coil creates an
unstable force. Fig. 13 shows that the superposition of the

two coil systems produces a stable ff_rce field, which ira-
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Fig. 12. Superpositioning effect of the power absorption for heating and

positioning coils in TEMPUS facility.

t5

ta,. x : HEATING COIL( 427 KHz )

I0 _ M : POSITIONING COIL( 144 lO_z )

a"" 5 x_ f _s
>4

! .

Current : 140 amp
.

-ts'' I .... I ,,, I , , , I .... I ,
-4 -2 0 2 4

POSITION OF S,_,(Pt,E IN VERTICAL AX/S(mm)
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c(_ils in TEMPUS facility.

plies that the sample can be levitated as long as the lifting

force is greater than the gravitational force.

Fig. 14 shows the effect of sample size on power ab-
sorption examined with the same coil geometry as pre-

vious paper [241 with an in-phase current of 300 A and a
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Fig. 16. Computed results of instant magnetic field density (left) and force

field (right) for predefined shape by TEMPUS quadrupole field (2500"C

niobium, 1400 A, 144 kHz, dotted line represents 6 mm dia sphere).

M

O

200

tS0

tO0

5O

0
1.5

.... I .... I .... I .... I .... I ....
-- : Surface Area Ratio

o : Power Ab|orpttonRaUo /

I

.... I .... I .... I,!,,,I .... I ....
2 2.5 3 3,5 4 4.5

SAMPL_ RADtUS (ram)

Fig. 15. Comparison of variation of power absorption and surface area of

sample with the sample size (300 A, 450 kHz, by the coils of 124], dotted

line indicates standard sample of 1 g iron drop).

Sxl0"2(Tesla) I x107(N/on J )

Fig. 17. Computed shape of the squeezed sample by the present electro-

magnetic calculation ._chcme (for 10 mm dia silver drop with 280 A. 144

kHz).

frequency of 450 kHz. As can be seen from the curve, the
power absorption increases in a parabolic fashion with the
sample radius. Because the surface area of the sample is
also proportional to the square of the sample radius, the
relationship between power absorption and surface area
was examined, as illustrated in Fig. 15, with respect to
the standard sample of a one gram iron drop. It shows that
the power absorption is approximately proportional to the
surface area. This approximation will be especially useful
for the case of small skin depths.

Fig. 16 illustrates the electromagnetic calculations for
a deformed niobium sample of predefined shape at 2500°C

in a quadrupole field. In this case, the skin depth is quite
large because of high temperature. The field calculations
are performed quite readily, in spite of the substantial de-
parture from the spherical shape. The computational time
(about 8 min) was comparable to that needed for calcu-
lations with an undeformed spherical sample. This is a

major attractiveness of the technique.

Finally, Fig. 17 shows the calculated equilibrium shape
of a silver droplet which is noticeably deformed as a result
of using a single coil in a microgravity setting. The iter-
ative scheme used for these calculations was outlined ear-

lier in this manuscript. In the present case a total of - 100
iterations was needed. We used a 15 × 15 grid during the

iterations for shape calculation and an additional calcu-
lation was carried out by a 20 × 20 grid in order to obtain
the final results. Hence the total computational time was
about 20 min on a micro-VAX 3100 workstation.

This example readily illustrates the usefulness of this
technique. It is of interest to note that while the deformed
droplet had an increase in the surface area of -4.5%, the
actual heating rate was reduced by some 31.4% because
the distance between the coil and the sample surface was
substantially increased as a result of the deformation. This
calculation is quite important in the design of levitation
melting experiments because it clearly .shows that defor-
mation of the sample will markedly alter the thermal en-

ergy input.
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CONCLUDING REMARKS

An efficient computational technique has been pre-

sented to describe the electromagnetic forces and the

power absorption in a levitation melted sample. In es-

sence the technique involves the use of a volume integral
coupled with a coordinate transformation, which renders

the method particularly attractive for tackling problems

involving substantially deformed specimens that still obey
rotational symmetry,

The computed results were tested against an analytical

solution for spherical specimens and the agreement was

excellent, even for a relatively coarse grid structure.

The calculations were then extended to represent the
behavior of nonspherical samples and to calculate the

shape of a metal droplet in the presence of a strong mag-
netic field by means of a force balance and the iterative

use of the previously described computational scheme.

This task could be readily performed in a fairly efficient
manner.

As a practical matter the computational scheme is being

used for the rational design of levitation melting experi-

ments in microgravity processing, but the same procedure
may also be utilized for tackling a broader class of elec-

tromagnetic shaping and meniscus control problems, pro-

vided rotational symmetry is being observed.
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